Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Plant J ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558071

RESUMO

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.

2.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472660

RESUMO

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Tabaco , Taxoides , Animais , Spodoptera , Taxoides/metabolismo , Taxoides/farmacologia , Paclitaxel/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Larva
3.
Plant Biotechnol J ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348566

RESUMO

Heavy metal pollution poses a significant risk to human health and wreaks havoc on agricultural productivity. Phytoremediation, a plant-based, environmentally benign, and cost-effective method, is employed to remove heavy metals from contaminated soil, particularly in agricultural or heavy metal-sensitive lands. However, the phytoremediation capacity of various plant species and germplasm resources display significant genetic diversity, and the mechanisms underlying these differences remain hitherto obscure. Given its potential benefits, genetic improvement of plants is essential for enhancing their uptake of heavy metals, tolerance to harmful levels, as well as overall growth and development in contaminated soil. In this study, we uncover a molecular cascade that regulates cadmium (Cd2+ ) tolerance in cotton, involving GhRCD1, GhbHLH12, GhMYB44, and GhHMA1. We identified a Cd2+ -sensitive cotton T-DNA insertion mutant with disrupted GhRCD1 expression. Genetic knockout of GhRCD1 by CRISPR/Cas9 technology resulted in reduced Cd2+ tolerance in cotton seedlings, while GhRCD1 overexpression enhanced Cd2+ tolerance. Through molecular interaction studies, we demonstrated that, in response to Cd2+ presence, GhRCD1 directly interacts with GhbHLH12. This interaction activates GhMYB44, which subsequently activates a heavy metal transporter, GhHMA1, by directly binding to a G-box cis-element in its promoter. These findings provide critical insights into a novel GhRCD1-GhbHLH12-GhMYB44-GhHMA1 regulatory module responsible for Cd2+ tolerance in cotton. Furthermore, our study paves the way for the development of elite Cd2+ -tolerant cultivars by elucidating the molecular mechanisms governing the genetic control of Cd2+ tolerance in cotton.

4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256227

RESUMO

Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.


Assuntos
MicroRNAs , Melhoramento Vegetal , Produtos Agrícolas , Agricultura , Clima , MicroRNAs/genética
5.
Eur J Med Chem ; 264: 116000, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056300

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented crisis, which has been exacerbated because specific drugs and treatments have not yet been developed. In the post-pandemic era, humans and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain in equilibrium for a long time. Therefore, we still need to be vigilant against mutated SARS-CoV-2 variants and other emerging human viruses. Plant-derived products are increasingly important in the fight against the pandemic, but a comprehensive review is lacking. This review describes plant-based strategies centered on key biological processes, such as SARS-CoV-2 transmission, entry, replication, and immune interference. We highlight the mechanisms and effects of these plant-derived products and their feasibility and limitations for the treatment and prevention of COVID-19. The development of emerging technologies is driving plants to become production platforms for various antiviral products, improving their medicinal potential. We believe that plant-based strategies will be an important part of the solutions for future pandemics.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Plantas
6.
Plant Physiol Biochem ; 202: 107995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666042

RESUMO

Plants have developed intricate defense mechanisms in response to fluctuating environmental cues, including the use of microRNA (miRNA) as post-transcriptional regulators. However, the specific mechanisms through which miRNA contributes to disease resistance remain largely elusive. While the miR171-SCLs have been investigated in an eclectic array of plants, there has been a notable scarcity of research specifically focused on cotton (Gossypium hirsutum). In our previous miRNA-sequencing analysis, we found that ghr-miR171a displayed a differential response to infections by Verticillium dahliae. In this study, we further investigated the function of the miR171a-SCL6 module in cotton during V. dahliae infection. The ghr-miR171a was confirmed to direct the cleavage of GhSCL6 mRNA in the post-transcriptional process, as evidenced by 5' RLM-RACE, ß-glucuronidase (GUS) histochemical staining and enzyme activity assay. Interestingly, we found that overexpressing ghr-miR171a reduced cotton plants' resistance to V. dahliae, while suppressing ghr-miR171a increased the plants' defense capacity. The GhSCL6 protein, when fused with green fluorescent protein (GFP), localizes in the cell nucleus, indicating its potential role in gene regulation. This was further corroborated by yeast two-hybrid assays, which verified GhSCL6's transcriptional activation ability. Through quantitative reverse transcriptase PCR (qRT-PCR), luciferase (LUC) fluorescence, and yeast one-hybrid assays, we found that GhSCL6 binds to the GT-box element of the GhPR1 promoter, activating its expression and thereby enhancing plant disease resistance. Taken together, our findings demonstrate that the cotton miR171a-SCL6 module regulates Verticillium wilt resistance in plants through the post-transcriptional process. This insight may offer new perspectives for disease resistance strategies in cotton.


Assuntos
Gossypium , MicroRNAs , Gossypium/genética , Resistência à Doença/genética , Núcleo Celular , Ensaios Enzimáticos , MicroRNAs/genética
7.
Theor Appl Genet ; 136(9): 204, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668681

RESUMO

BACKGROUND: Upland cotton wild/landraces represent a valuable resource for disease resistance alleles. Genetic differentiation between genotypes, as well as variation in Verticillium wilt (VW) resistance, has been poorly characterized for upland cotton accessions on the domestication spectrum (from wild/landraces to elite lines). RESULTS: To illustrate the effects of modern breeding on VW resistance in upland cotton, 37 wild/landraces were resequenced and phenotyped for VW resistance. Genomic patterns of differentiation were identified between wild/landraces and improved upland cotton, and a significant decline in VW resistance was observed in association with improvement. Four genotypes representing different degrees of improvement were used in a full-length transcriptome analysis to study the genetic basis of VW resistance. ROS signaling was highly conserved at the transcriptional level, likely providing the basis for VW resistance in upland cotton. ASN biosynthesis and HSP90-mediated resistance moderated the response to VW in wild/landraces, and loss of induction activity of these genes resulted in VW susceptibility. The observed genomic differentiation contributed to the loss of induction of some important VW resistance genes such as HSP90.4 and PR16. CONCLUSIONS: Besides providing new insights into the evolution of upland cotton VW resistance, this study also identifies important resistance pathways and genes for both fundamental research and cotton breeding.


Assuntos
Resistência à Doença , Verticillium , Resistência à Doença/genética , Melhoramento Vegetal , Genômica , Gossypium/genética , Genótipo
8.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685857

RESUMO

Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.


Assuntos
Células Eucarióticas , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio
9.
Physiol Plant ; 175(4): e13972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405386

RESUMO

Cotton (Gossypium hirsutum L.) is an important economic crop, and cotton fiber is one of the longest plant cells, which provides an ideal model for the study of cell elongation and secondary cell wall synthesis. Cotton fiber length is regulated by a variety of transcription factors (TF) and their target genes; however, the mechanism of fiber elongation mediated by transcriptional regulatory networks is still unclear to a large extent. Here, we used a comparative assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) assay and RNA-seq analysis to identify fiber elongation transcription factors and genes using the short-fiber mutant ligon linless-2 (Li2 ) and wild type (WT). A total of 499 differential target genes were identified and GO analysis shows that differential genes are mainly involved in plant secondary wall synthesis and microtubule-binding processes. Analysis of the genomic regions preferentially accessible (Peak) has identified a number of overrepresented TF-binding motifs, highlighting sets of TFs that are important for cotton fiber development. Using ATAC-seq and RNA-seq data, we have constructed a functional regulatory network of each TF regulatory target gene and also the network pattern of TF regulating differential target genes. Further, to obtain the genes related to fiber length, the differential target genes were combined with FLGWAS data to identify the genes highly related to fiber length. Our work provides new insights into cotton fiber elongation.


Assuntos
Cromatina , Fibra de Algodão , Cromatina/genética , Cromatina/metabolismo , Mutação , Gossypium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica
10.
New Phytol ; 240(1): 207-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37434324

RESUMO

Plant somatic embryogenesis (SE) is a multifactorial developmental process where embryos that can develop into whole plants are produced from somatic cells rather than through the fusion of gametes. The molecular regulation of plant SE, which involves the fate transition of somatic cells into embryogenic cells, is intriguing yet remains elusive. We deciphered the molecular mechanisms by which GhRCD1 interacts with GhMYC3 to regulate cell fate transitions during SE in cotton. While silencing of GhMYC3 had no discernible effect on SE, its overexpression accelerated callus formation, and proliferation. We identified two of GhMYC3 downstream SE regulators, GhMYB44 and GhLBD18. GhMYB44 overexpression was unconducive to callus growth but bolstered EC differentiation. However, GhLBD18 can be triggered by GhMYC3 but inhibited by GhMYB44, which positively regulates callus growth. On top of the regulatory cascade, GhRCD1 antagonistically interacts with GhMYC3 to inhibit the transcriptional function of GhMYC3 on GhMYB44 and GhLBD18, whereby a CRISPR-mediated rcd1 mutation expedites cell fate transition, resembling the effects of GhMYC3 overexpression. Furthermore, we showed that reactive oxygen species (ROS) are involved in SE regulation. Our findings elucidated that SE homeostasis is maintained by the tetrapartite module, GhRCD1-GhMYC3-GhMYB44-GhLBD18, which acts to modulate intracellular ROS in a temporal manner.


Assuntos
Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio , Diferenciação Celular
11.
Front Immunol ; 14: 1132939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377967

RESUMO

Introduction: Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods: GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results: GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions: Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Camundongos , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Asma/metabolismo , Pulmão/patologia , Hipersensibilidade Respiratória/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Colágeno/metabolismo , Transferases
12.
Plant J ; 115(6): 1729-1745, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37326240

RESUMO

The steroidal hormone brassinosteroid (BR) has been shown to positively regulate cell expansion in plants. However, the specific mechanism by which BR controls this process has not been fully understood. In this study, RNA-seq and DAP-seq analysis of GhBES1.4 (a core transcription factor in BR signaling) were used to identify a cotton cell cycle-dependent kinase inhibitor called GhKRP6. The study found that GhKRP6 was significantly induced by the BR hormone and that GhBES1.4 directly promoted the expression of GhKRP6 by binding to the CACGTG motif in its promoter region. GhKRP6-silenced cotton plants had smaller leaves with more cells and reduced cell size. Furthermore, endoreduplication was inhibited, which affected cell expansion and ultimately decreased fiber length and seed size in GhKRP6-silenced plants compared with the control. The KEGG enrichment results of control and VIGS-GhKRP6 plants revealed differential expression of genes related to cell wall biosynthesis, MAPK, and plant hormone transduction pathways - all of which are related to cell expansion. Additionally, some cyclin-dependent kinase (CDK) genes were upregulated in the plants with silenced GhKRP6. Our study also found that GhKRP6 could interact directly with a cell cycle-dependent kinase called GhCDKG. Taken together, these results suggest that BR signaling influences cell expansion by directly modulating the expression of cell cycle-dependent kinase inhibitor GhKRP6 via GhBES1.4.


Assuntos
Brassinosteroides , Gossypium , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Gossypium/genética , Gossypium/metabolismo , Ciclo Celular/genética , Plantas/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Genome Biol ; 24(1): 111, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165460

RESUMO

BACKGROUND: Verticillium wilt is one of the most devasting diseases for many plants, leading to global economic loss. Cotton is known to be vulnerable to its fungal pathogen, Verticillium dahliae, yet the related genetic mechanism remains unknown. RESULTS: By genome-wide association studies of 419 accessions of the upland cotton, Gossypium hirsutum, we identify ten loci that are associated with resistance against Verticillium wilt. Among these loci, SHZDI1/SHZDP2/AYDP1 from chromosome A10 is located on a fragment introgressed from Gossypium arboreum. We characterize a large cluster of Toll/interleukin 1 (TIR) nucleotide-binding leucine-rich repeat receptors in this fragment. We then identify a dual-TIR domain gene from this cluster, GhRVD1, which triggers an effector-independent cell death and is induced by Verticillium dahliae. We confirm that GhRVD1 is one of the causal gene for SHZDI1. Allelic variation in the TIR domain attenuates GhRVD1-mediated resistance against Verticillium dahliae. Homodimerization between TIR1-TIR2 mediates rapid immune response, while disruption of its αD- and αE-helices interface eliminates the autoactivity and self-association of TIR1-TIR2. We further demonstrate that GhTIRP1 inhibits the autoactivity and self-association of TIR1-TIR2 by competing for binding to them, thereby preventing the resistance to Verticillium dahliae. CONCLUSIONS: We propose the first working model for TIRP1 involved self-association and autoactivity of dual-TIR domain proteins that confer compromised pathogen resistance of dual-TIR domain proteins in plants. The findings reveal a novel mechanism on Verticillium dahliae resistance and provide genetic basis for breeding in future.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Gossypium/metabolismo , Resistência à Doença/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
14.
J Adv Res ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207930

RESUMO

INTRODUCTION: The unavailability of intergenic region annotation in whole genome sequencing and pan-genomics hinders efforts to enhance crop improvement. OBJECTIVES: Despite advances in research, the impact of post-transcriptional regulation on fiber development and translatome profiling at different stages of fiber growth in cotton (G. hirsutum) remains unexplored. METHODS: We utilized a combination of reference-guided de novo transcriptome assembly and ribosome profiling techniques to uncover the hidden mechanisms of translational control in eight distinct tissues of upland cotton. RESULTS: Our study identified P-site distribution at three-nucleotide periodicity and dominant ribosome footprint at 27 nucleotides. Specifically, we have detected 1,589 small open reading frames (sORFs), including 1,376 upstream ORFs (uORFs) and 213 downstream ORFs (dORFs), as well as 552 long non-coding RNAs (lncRNAs) with potential coding functions, which fine-tune the annotation of the cotton genome. Further, we have identified novel genes and lncRNAs with strong translation efficiency (TE), while sORFs were found to affect mRNA transcription levels during fiber elongation. The reliability of these findings was confirmed by the high consistency in correlation and synergetic fold change between RNA-sequencing (RNA-seq) and Ribosome-sequencing (Ribo-seq) analyses. Additionally, integrated omics analysis of the normal fiber ZM24 and short fiber pag1 cotton mutant revealed several differentially expressed genes (DEGs), and fiber-specific expressed (high/low) genes associated with sORFs (uORFs and dORFs). These findings were further supported by the overexpression and knockdown of GhKCS6, a gene associated with sORFs in cotton, and demonstrated the potential regulation of the mechanism governing fiber elongation on both the transcriptional and post-transcriptional levels. CONCLUSION: Reference-guided transcriptome assembly and the identification of novel transcripts fine-tune the annotation of the cotton genome and predicted the landscape of fiber development. Our approach provided a high-throughput method, based on multi-omics, for discovering unannotated ORFs, hidden translational control, and complex regulatory mechanisms in crop plants.

15.
Trends Plant Sci ; 28(10): 1178-1191, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37208203

RESUMO

Many newly created early maturing varieties exhibit poor stress resistance and low yield, whereas stress-resistant varieties are typically late maturing. For this reason, the polymerization of early maturity and other desired agronomic qualities requires overcoming the negative connection between early maturity, multi-resistance, and yield, which presents a formidable challenge in current breeding techniques. We review the most salient constraints of early maturity breeding in current crop planting practices and the molecular mechanisms of different maturation timeframes in diverse crops from their origin center to production areas. We explore current breeding tactics and the future direction of crop breeding and the issues that must be resolved to accomplish the polymerization of desirable traits in light of the current obstacles and limitations.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Fenótipo , Produtos Agrícolas/genética , Agricultura
16.
Plant Cell ; 35(6): 2114-2131, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36861340

RESUMO

Brassinosteroid (BR), a growth-promoting phytohormone, regulates many plant growth processes including cell development. However, the mechanism by which BR regulates fiber growth is poorly understood. Cotton (Gossypium hirsutum) fibers are an ideal single-cell model in which to study cell elongation due to their length. Here we report that BR controls cotton fiber elongation by modulating very-long-chain fatty acid (VLCFA) biosynthesis. BR deficiency reduces the expression of 3-ketoacyl-CoA synthases (GhKCSs), the rate-limiting enzymes involved in VLCFA biosynthesis, leading to lower saturated VLCFA contents in pagoda1 (pag1) mutant fibers. In vitro ovule culture experiments show that BR acts upstream of VLCFAs. Silencing of BRI1-EMS-SUPPRESOR 1.4 (GhBES1.4), encoding a master transcription factor of the BR signaling pathway, significantly reduces fiber length, whereas GhBES1.4 overexpression produces longer fibers. GhBES1.4 regulates endogenous VLCFA contents and directly binds to BR RESPONSE ELEMENTS (BRREs) in the GhKCS10_At promoter region, which in turn regulates GhKCS10_At expression to increase endogenous VLCFA contents. GhKCS10_At overexpression promotes cotton fiber elongation, whereas GhKCS10_At silencing inhibits cotton fiber growth, supporting a positive regulatory role for GhKCS10_At in fiber elongation. Overall, these results uncover a mechanism of fiber elongation through crosstalk between BR and VLCFAs at the single-cell level.


Assuntos
Brassinosteroides , Fibra de Algodão , Gossypium/genética , Diferenciação Celular , Ácidos Graxos
17.
Sci China Life Sci ; 66(10): 2214-2256, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899210

RESUMO

Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.


Assuntos
Genômica , Melhoramento Vegetal , Humanos , Fatores de Transcrição/metabolismo , Biotecnologia , Reguladores de Crescimento de Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas
18.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901821

RESUMO

Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.


Assuntos
Células-Tronco Pluripotentes , Animais , Humanos , Medicina Regenerativa , Transdução de Sinais , Células-Tronco Totipotentes , Plantas
19.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834921

RESUMO

The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fenômenos Fisiológicos Vegetais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...